
Hybrid Coevolutionary Algorithms vs. SVM Algorithms
Rui Li, Bir Bhanu and Krzysztof Krawiec

Center for Research in Intelligent Systems
University of California
Riverside, CA, 92521

{rli, bhanu}@vislab.ucr.edu, krawiec@cs.put.poznan.pl

ABSTRACT
As a learning method support vector machine is regarded as one of
the best classifiers with a strong mathematical foundation. On the
other hand, evolutionary computational technique is characterized as
a soft computing learning method with its roots in the theory of
evolution. During the past decade, SVM has been commonly used as
a classifier for various applications. The evolutionary computation
has also attracted a lot of attention in pattern recognition and has
shown significant performance improvement on a variety of
applications. However, there has been no comparison of the two
methods. In this paper, first we propose an improvement of a
coevolutionary computational classification algorithm, called
Improved Coevolutionary Feature Synthesized EM (I-CFS-EM)
algorithm. It is a hybrid of coevolutionary genetic programming and
EM algorithm applied on partially labeled data. It requires less
labeled data and it makes the test in a lower dimension, which speeds
up the testing. Then, we provide a comprehensive comparison
between SVM with different kernel functions and I-CFS-EM on
several real datasets. This comparison shows that I-CFS-EM
outperforms SVM in the sense of both the classification performance
and the computational efficiency in the testing phase. We also give an
intensive analysis of the pros and cons of both approaches.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology – Classifier
design and evaluation.

General Terms
Algorithms.

Keywords
Machine learning, co-evolution, pattern classification, Support
Vector Machines

1. INTRODUCTION
Support vector machines (SVM), introduced by Vapnik and
coworkers in 1992 [1], has been noted as one of the best
classifiers during the past 20 years. It is popular in bioinformatics,
text analysis and pattern classification [2]. Table I lists the pros
and cons of SVM. It is not a perfect classifier.

Table I. Pros and cons of SVM.

• Pros • Cons
• It is independent of the feature

dimensionality thus immune from
the “curse of dimensionality”.

• With the kernel tricks, different
discriminant functions can be
obtained by using different kernel
functions.

• The boundary is determined only
by its support vectors, namely SVM
is robust against changes of all
vectors but its support vectors.

• Different SVM classifiers
constructed by using different
kernels (polynomial, RBF, linear)
extract almost the same support
vectors.

• As a supervised classifier, it
needs large amount of
labeled training data.

• The best choice of the kernel
function for a given
problem is still a research
problem.

• The testing speed depends
on the number of support
vectors, so it could be slow.

• The optimal design for
multi-class SVM classifiers
is also a research area.

• It has convergence problem
with large datasets.

On the other hand, during the past decade, another methodology
called Co-Evolutionary Computation (CEC) has attracted lots of
attention in pattern recognition and machine learning. It has
shown great performance on image representation, object
recognition and image retrieval, etc. As a classifier, it is
comparable to SVM for classification performance [3].
However, there has been no shoulder-to-shoulder comparison
between CEC and SVM yet. So in this paper, first, we select one
of the recent CEC based classification algorithm Coevolutionary
Feature Synthesized EM (CFS-EM) [3], make improvements to it
and call it I-CFS-EM. Then in the experiments, we compare it
with SVM using different kernels on three image datasets. The
experimental results show that I-CFS-EM has higher classification
accuracy and better convergence than CFS-EM and it outperforms
SVM in both the sense of classification performance and testing
efficiency. We also discuss about the pros and cons of both I-
CFS-EM and SVM and their suitability for different applications.

The rest of this paper is organized as follows. Section 2 gives
some related work. Section 3 describes the I-CFS-EM algorithm
in detail. Section 4 presents extensive comparisons between I-
CFS-EM and SVM. Finally, section 5 concludes the paper.

2. RELATED WORK
The handling of high feature dimensionality and the labeling of
training data are the two major challenges in pattern recognition.
To handle the high feature dimensionality, there are two major
approaches. One is to use special classifiers which are not
sensitive to dimensionality, for example, SVM algorithm and
boosting algorithm. The other way is feature selection. It is
defined as selecting a subset of features or constructing new
features that are useful to build a good predictor for classification.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

456

A variety of interesting feature selection approaches has been
proposed. Lee and Seung [4] use a non-negative matrix
factorization (NMF) approach that yields a part-based
representation instead of a holistic representation. It is found to be
useful for face recognition [5] and document retrieval [6] . He et
al. [7, 8] propose the approach of locality preserving projections
(LPP) for face analysis and image retrieval. It preserves local
information by detecting a nonlinear manifold structure. Genetic
algorithms and genetic programming have also been used for
feature selection for object recognition [9] and image retrieval
[10]. All the above approaches are supervised classifiers. So they
need a large amount of labeled data to train large datasets. But
manual labeling is expensive and subjective.
On the other hand, unsupervised learning, for example, the
Expectation Maximization (EM) algorithm [11] which is
commonly used does not have the labeling problem, but it has two
limitations. 1) “The curse of dimensionality,” in high dimensional
feature space it needs a large amount of data and the
computational cost varies exponentially with the dimensionality,
which is not always available. 2) As a hill-climbing kind of
method, the convergence of EM algorithm is guaranteed only at a
local maximum.
Thus neither supervised learning nor unsupervised learning can
solve both the high dimensionality and the labeling problem
simultaneously. Therefore, the learning usually can only be
carried out with the hybrid of both labeled and unlabeled data,
called transductive learning [12].
The basic idea of transductive learning is that it combines both
labeled and unlabeled data in training. In this scheme, labeled data
provide the initialization and validation of the classifier, and the
unlabeled data captures the statistical characteristics of the dataset
and boost the classifier. Various transductive learning methods
have emerged during the past 10 years. Joachimes [13] uses SVM
scheme to maximize the margin for both the unlabeled data and
the labeled data by assigning the unlabeled data to proper classes.
Bargeron et al. [14] propose a boosting-based transductive
learning. The idea is to construct a diversity of unsupervised
models of unlabeled data using a clustering algorithm. These
models are then exploited to construct a number of hypotheses
using the labeled data and the learner selects a hypothesis that
minimizes a transductive error bound. Wu et al. use a linear
feature transformation (MDA) + EM scheme to solve the
transductive learning problem [15, 16]. Li et al. [3] propose
another transductive learning scheme, a hybrid of non-linear
feature synthesis and EM algorithm, called CFS-EM.
Transductive learning has been applied in image retrieval [3, 16],
color segmentation [15], text classification [13], text detection
[14] and digit recognition [17].
As the latest member of transductive learning family, CFS-EM
has shown a better performance than D-EM and comparable
performance with SVM [3].
In this paper, we build a new classifier based on CFS-EM, called
the Improved CFS-EM (I-CFS-EM). Besides of keeping all the
advantages of CFS-EM, it improves CFS-EM on the training
speed, convergence and classification performance. In this paper
we do comprehensive comparison between I-CFS-EM and SVM
on real image datasets. We also discuss the pros and cons of each
method, and their suitable applications.

3. I-CFS-EM ALGORITHM
To help the readers understand the paper, we list the definition of
all the key symbols in Table II.

Table II. Definition of the key symbols used in this paper.

C The number of classes
D The original feature dimensionality
d The reduced feature dimensionality
L The labeled training data set
U The unlabeled training data set
T The total number of training data (L+U)
l L in low dimension
u U in low dimension
r The percentage of L in T, r =L/(L+U)
X The dataset in EM algorithm

Y The labels for X in EM algorithm and the labels for L+U in I-
CFS-EM algorithm

W L, U + Y.
λ The percentage of support vectors in L

βi,γ,τ,t The parameters for SVM classifier
CO(.) Composite operator vector
POP The whole population in I-CFS-EM

K The maximum composite operator size

αi,ui,Σi
Parameters of Gaussian mixture (component weights, means
and covariance matrices)

θ The whole parameter set for Gaussian mixture (αi+ui+Σi in
EM algorithm) or the Bayesian classifier in I-CFS-EM.

I-CFS-EM is a combination of coevolutionary feature synthesis
(CFS) and EM algorithm. So we discuss them separately before
the whole algorithm.

3.1 Coevolutionary feature synthesis
Coevolutionary feature synthesis is implemented with a
coevolutionary genetic programming (CGP) approach [9]. It
creates low dimensional synthesized feature vectors from the
original high dimensional feature vectors. The synthesized
features are obtained by applying a series of operators (called a
composite operator vector) to the original features. These
operators are binary trees with simple operations, called primitive
operators (12 simple operators: ADD, SUB, MUL, DIV, ADDC,
SUBC, MULC, DIVC, LOG, SQRT, MIN2, MAX2) as the inner
nodes and original features as the leaf nodes. The fitness function
is the classification accuracy of the Bayesian classifier in the low
dimensional synthesized feature space. This helps the objects in
the same class to form a Gaussian component no matter how they
are distributed in the original space. Actually, with the help of the
fitness function, we force the distribution in the low dimension to
be a Gaussian Mixture Model (GMM) even though the original
features are not GMM and the operators are non-linear. In another
word, we use the GMM as a target not an assumption because the
EM step in the loop is based on the GMM assumption. We follow
the CGP algorithm proposed in [9] to find the “best” composite
operator vector. During the training phase, CGP runs on the
labeled training data and evolves to get the best composite
operator vector and a Bayesian classifier in the synthesized
feature space. The during the testing phase, a composite feature
vector (low dimensional vector) is firstly obtained by applying the
composite operator vector on the original features of the testing
sample, and then the Bayesian classifier is used for its
classification.

457

3.1.1 Generational Coevolutionary Genetic
Programming (CGP)
Generational coevolutionary genetic programming is shown as in
Algorithm 1. This algorithm evolves composite operators. The
composite operators (binary trees) in the initial subpopulations are
randomly generated. A composite operator is generated in two
steps. In the first step, the internal nodes of the tree representing
the composite operator is randomly determined in a recursive
manner as long as this number is smaller than a given number. In
the second step, after all the internal nodes are generated, the
original features are randomly picked and attached to the leaf
nodes. The GP operations are applied in the order of crossover,
mutation and selection. In addition, an elitism replacement
method is adopted to keep the best composite operator from
generation to generation. To evaluate the jth composite operator
COj in step 5) in Algorithm 2, the current best composite operator
in each of the other subpopulations are selected and combined
with COj to form a composite operator vector where composite
operator from the jth subpopulation occupies the jth position in
the vector (j= 1,…, S). The composite operator vector is run on
the original features of the training images to get composite
feature vectors and they are used to build a Bayesian classifier.
The classification accuracy of the Bayesian classifier is the fitness
of the composite operator vector and COj.

Algorithm 1: Generational Coevolutionary genetic programming
(CGP)

Input: primitive feature vectors, class number, number of subpopulations
Output: composite operator vector, Bayesian classifier in low dimension.
Begin:
1. Randomly generate S subpopulations of size M and evaluate each

composite operator in each subpopulation individually.
2. FOR gen = 1 to G DO
 FOR i =1 to S DO

1) Keep the best composite operator in subpopulation Pi .
2) Perform crossover on the composite operators in Pi until the

crossover rate is satisfied and keep all the offspring from
crossover.

3) Perform mutation on the composite operators in Pi and the
offspring from crossover with the probability of mutation rate.

4) Perform selection on Pi to select some composite operators and
combine them with the composite operators from crossover and
mutation to get a new subpopulation Pi

’ of the same size as Pi.
5) Evaluate each composite operator COj , j = 1, …, M in Pi

’.
6) Perform elitism replacement.
7) Form the current best composite operator vector consisting of

the best composite operators from corresponding
subpopulations and evaluate it. If its fitness is above the fitness
threshold, goto 3.

END FOR
 END FOR
3. Select the best composite operator from each subpopulation to form the

learned composite operator vector and output it.
End

3.1.2 Parameters
The key parameters are the number of sub-population S, the size
of sub-population M, the number of generations G, the crossover
and mutation rates, the tournament size and the fitness threshold.
CGP stops whenever it finishes the specified number of
generations or the performance of the Bayesian classifier is above
the fitness threshold. After the termination, CGP selects the best
composite operator of each sub-population to form the learned
composite operator vector and the Bayesian classifier to be used

during the testing. The number of sub-population and the size of
sub-population are dataset dependent parameters and they are
related with the size of the search space. Normally they are a very
small percentage of the size of the search space. We have
determined these two parameters and the number of generations
based on empirical experiments from our previous work [3, 10].
Other parameters (crossover rate, mutation rate and tournament
size) are well explored in the literature on evolutionary
computation, so they are chosen based on the experience [18, 19].

3.2 EM Algorithm
We assume feature vectors in the low dimension follow a C
component Gaussian Mixture Model (GMM). They can be
regarded as samples of a d-dimensional random variable X, where
x = [x1, … xd]T represents a particular sample. Its probability
density function is defined as ()θ|Xp = ()iii

C

i
f θα |X∑

()iiii

C

i
f ∑=∑ ,| uXα . In this definition, α1, … αC are the mixture

probabilities, so they must be positive and sum up to 1. θi is the
set of parameters for the ith Gaussian component, which includes
mean μi and covariance matrix Σi. Thus, θ ≡ {α1 , … αC, θ1 , …
θC} is the complete set of parameters needed to specify the
mixture. Given a set of N independent samples of X: X ={x(1), …,
x(N)}, the goal is to find θ which maximizes log p(X|θ) (maximum
likelihood). Expectation-Maximization (EM) is such an algorithm
[20] to find θ. It is based on the interpretation of X as incomplete
data. The missing part is a set of N labels Y =[y(1), … , y(N)]
associated with the N samples, indicating which component
produced each sample. y(n) =[y1

(n),…, yC
(n)] , where yk

(n) =1 and
yj

(n) =0 for j ≠ k, means that sample y(n) was produced by the kth
component. The complete log-likelihood is

()θYX,plog = () ()()[]∑∑
= =

N

n

C

i
i

n
i

n
i py

1 1
log θα x (1)

EM algorithm produces a sequence of estimates { ()tθ̂ , t = 0, 1,
2,…} by alternatively applying the following E-step and M-step
until some convergence criterion is met.
• E-step computes the conditional expectation of the complete
log-likelihood, given X and the current estimate ()tθ̂ . The result is
the so-called Q-function shown in equation (2). In this equation,
because of the linearity of log p(X,Y |θ) with respect to Y, we only

need to compute the conditional expectation Z ≡ E[Y|X, ()tθ̂]. It
is explicitly given by equation (3), where zi

(n) is a posteriori
probability that yi

(n) =1, after observing x(n).

))(ˆ,(tQ θθ)](ˆ|)([log tpE θθ ,X|YX,≡ = ()θZX,plog (2)

() () () ()
()

()∑
=

===≡ C

j
j

n
j

i
n

inn
i

n
i

n
i

tpt

tpttytyEz

1
))(ˆ|()(ˆ

))(ˆ|()(ˆ
)](ˆ,|1Pr[)](ˆ,|[

θα

θαθθ
x

xxX (3)

• M-step updates the parameter estimation to maximize the Q-
function.

3.3 I-CFS-EM Algorithm
The I-CFS-EM algorithm is described in Algorithm 2. In the
initialization, CGP is applied on the labeled training data (L) to
get a composite operator vector CO(·) and a Bayesian classifier

458

represented by the Gaussian distribution parameter set θ. The
population corresponding to the best composite operator vector is
saved (POP). Both the labeled training data (L) and the unlabeled
training data (U) are transformed into the low dimension (l and u)
using this composite operator vector CO(·). In I-CFS-EM
iteration, firstly the ‘EM hill climbing’ step is applied on this low
dimension dataset (l+u) to find a locally optimal Bayesian
classifier. EM stops when the Bayesian parameters (θ) do not
change for two consecutive iterations. At this time, both L and U
are “labeled” by the Bayesian classifier. Labels of L will be
changed to their ground-truth labels (step 2). In the ‘Jump out of
local maximum’ step, CGP is applied on the “labeled” whole
dataset to find a better composite operator vector (step 6) and to
update the Bayesian classifier. The stored population is used as
the initial population for CGP and it is updated by the new
population to keep the performance increasing. The ‘Hill
climbing’ and ‘Jump out of local maximum’ steps iterate until one
of the three termination conditions is reached: 1) a certain number
of iterations is run, 2) a satisfactory classification performance is
reached, or 3) the fitness value does not change for 5 iterations.

Algorithm 2: I-CFS-EM

Input: labeled training dataset L from C classes in the original feature
space
Unlabeled training dataset U in the original feature space
Synthesized feature dimension d
CGP parameters (sub-population size, crossover rate, mutation
rate, maximum composite operator size, fitness value,
tournament size and generation number)

Output: Composite operator vector CO(•)
 Bayesian classifier in the low dimension θ

Begin:
Initialization:

[CO(•), θ] = CGP(L). (randomly initialized)
Save the population corresponding to the best CO(•) as POP.
l = CO(L), u = CO(U).

I-CFS-EM iteration:
Hill climbing:

1) Get labels (Y) for l + u (by calculating Z based on equation (3)).
2) Change the labels (Y) of l to the ground-truth labels.
3) Update θ based on Y.
4) If θ does not change much, goto 5), otherwise, goto 1).

Jump out of local maximum:
5) W = L,U + Y. // W is the “labeled” whole training dataset (L, U

together with their labels Y)
6) [CO(•),θ] = CGP(W) (using POP as the initial population

and updating POP at the end).
7) l = CO(L), u = CO(U), goto 1).

End

In the hybrid approach, CFS-EM initializes the entire population
randomly at each iteration, which gives up all the training work
from the previous iteration. Different with CFS-EM, the hybrid I-
CFS-EM saves the population at the CGP step of each iteration
and uses it as the initial population for the CGP step in the next
iteration (as highlighted in Algorithm 2 with bold font). This
helps to obtain a better convergence and a better classification
performance. I-CFS-EM also defines three new termination
conditions to speed up the training. In addition, Exploration and
exploitation scheme is used within CGP to decrease the mutation
rate from iteration to iteration, such that population with big
variance could be explored using high mutation rate in the early
iterations and the convergence is assured with the low mutation
rate in the later iterations. The mutation rate is fixed for all the

generations in one iteration. The advantages of I-CFS-EM are: 1)
It synthesizes low-dimensional features based on the CGP
algorithm, which yields near “optimal” nonlinear transform; 2)
The unlabeled data can be boosted with the help of the class
distribution learning using the CGP feature synthesis approach; 3)
The possibility exists of helping EM to jump out of local
maximum and reach the global maximum.
Table III compares I-CFS-EM with SVM in both the classification
capability and computational complexity.

Table III. Comparison between I-CFS-EM and SVM in
theoretical considerations.

 I-CFS-EM SVM
Feature dimensionality change High low High higher
Problem of kernel selection No Yes
Sensibility to parameter selection No Yes
Meaningful model for the classifier Yes No
Multi-class handling Natural Non-natural
Stability Medium High
Training time Long Short
Testing time Short Long

In the following we explain Table III in detail. 1) Both of them
synthesize new features from the original data. The difference is
that I-CFS-EM transforms the original feature vectors into a low
dimension while SVM projects them into a higher dimension.
Both of the transformed features have no physical meaning. 2)
The performance of SVM highly depends on the selection of
kernel function. Different kernel functions give quite different
performance. Some kernel functions (e.g. sigmoid) do not even
converge on some dataset. I-CFS-EM has no such constraint. 3)
Even a good kernel function is picked for SVM, the parameter
setting has a big impact on the performance, so cross validation is
required to choose the best set of parameters. On the other hand,
even though I-CFS-EM has a lot more parameters (population
size, crossover/mutation rate, etc.) to set, the evolutionary
computation community has done a lot of research on it and the
effect of parameters is reasonably well understood. So the default
parameters generally do a good job. 4) I-CFS-EM classifier is
obtained in the form of a feature transformation and a Bayesian
classifier. However, SVM generates black box models in the
sense that it has no ability to explain, in an understandable form.
5) Given in a form of a Bayesian classifier in the low dimension,
I-CFS-EM is born for multi-class tasks. SVM is designed for two
class problems. Thus it can only use one-against-one (or one-
against-the-rest) + voting mode to handle multi-class problems, a
non-natural way. So it is not as efficient as I-CFS-EM for testing.
6) As a learning approach, I-CFS-EM gives different classifiers at
each run. Some time it overfits, but it can be avoided by
integrating a criterion like Minimum Description Length in the
fitness function. SVM is less likely to overfit and gives the same
result all the time. So I-CFS-EM is not as stable as SVM. 7) From
the computational cost perspective, I-CFS-EM is slower than
SVM in the training phase but much faster than SVM in the
testing phase. The long training time is due to the exploitation
among the large population. The short testing time is because that
the feature transformation enables the test to be done in the
synthesized low-dimensional space, while SVM has to make the
classification computation in the original high dimensional space
using all the support vectors. This makes I-CFS-EM suitable for
time critical applications even though it requires long training
time. There is no free lunch, right?

459

4. EXPERIMENTAL RESULTS
To evaluate the efficacy of I-CFS-EM approach for classification,
we apply it on three real image datasets of small, medium and
large sizes. We compare it with RBF-SVM, Linear-SVM and
Poly-SVM (corresponding to radial basis function, linear and
polynomial kernels) on both the classification performance and
the test efficiency. We use image datasets because for image
retrieval, the labeling is a problem and the query efficiency is a
key concern.

4.1 Datasets
• Corel-1500: We select 1200 images belonging to 12 classes
from Corel Stock photo library (Mayan & Aztec Ruins, horses,
owls, sunrises & sunsets, North American wildflowers, ski scenes,
coasts, auto racing, firework photography, divers & diving, land
of the Pyramids and lions) because they have high semantic
consistency for each class and it has been used in some previous
work [21] for image retrieval evaluation. The images in each class
have similar visual features. We assume that the images in each
class in the feature space forms a Gaussian cluster in the feature
space. Then we add 300 images from three other CDs in the
library (hawks and falcons, tigers and tulips) to form Corel-1500.
The three new CDs are merged to owl, lions and North American
wildflowers, respectively. Thus, Corel-1500 still has 12 classes.
The purpose of Corel-1500 is to demonstrate that CGP can map
the original features to a low dimensional space and make their
distribution a Gaussian no matter how the original features are
distributed. Since each class is no longer a Gaussian cluster in the
original feature space, this database is challenging for pure EM
and linear transformation D-EM [16].
• Corel-6600: This dataset is also extracted from Corel stock.
It contains 50 classes and there are ~100 images in each class,
which give a total of 6600 images. This dataset is to test the
scalability of the algorithm.
• Corel-10038: This dataset is also obtained from Corel stock.
It contains 56 classes and a total of 10038 images. The same
dataset was used by Yin el al. [22] for relevance feedback
experiments. The dataset is quite unbalanced for different classes.
The class size varies from 695 images to 20 images. The small
classes do not have enough samples to fit the Gaussian
distributions. So we redistribute samples from the three smallest
classes (obelisk, golf course and national flag) into the visually
closest classes. Thus this dataset has 53 classes and the minimum
class has 60 images. All the other classes have varying number of
images: 62, …, 395,…, 695. This dataset can test the ability to
handle unbalanced classes. This dataset is larger than Corel-6600
and the classes are unbalanced. Thus it can test the algorithm’s
scalability in a more comprehensive way than Corel-6600.
For Corel-1500 and Corel-6600, each image is represented by 16
texture features, 6 color features and 18 structural features, a total
of 40 features. For Corel-10038, only texture features and color
features are used (totally 22). The 16 texture features are means
and standard deviations derived from 8 Gabor filters (2 scales and
4 orientations). The 6 color features are means and standard
deviations of the HSV color channels. The 18 structural features
are extracted using the water-filling approach [23].

4.2 Experimental settings
All the features in the above three datasets are normalized (to
range [0,1]). The whole dataset is split into halves, one half for

training and the other half for testing. A percentage of the training
data (20%, 40%, 60% and 80%) is defined as the labeled training
data (L) and the rest as the unlabeled training data (U). For a
certain percentage of labeled data, the average classification
accuracies, the precision-recall curves and the query
computational cost on the testing data are compared among the
four classifiers. I-CFS-EM reduces the feature dimensionality
from 40 to 6 for Corel-1500 and Corel-6600, and from 22 to 4 for
Corel-10038. Because of the unbalanced classes in Corel-10038
even after redistributing the samples from the smallest classes,
some small classes (minimum class size is 6 for the training data
when 20% of training data are labeled) do not have enough
samples to fit a 6 dimensional Gaussian distribution. So for this
dataset, we decrease the features dimensionality to 4.
We use LIBSVM [24] to evaluate the performance of SVM. We
use RBF, linear and polynomial kernel functions. We do not use
the sigmoid function because kernel matrix using sigmoid may
not be positive definite. Actually, we have tried sigmoid kernel in
the experiment and the result is singular. To handle multi-class
problem, it works in a one-against-one + voting mode. We do a
five-fold cross validation to obtain the best set of parameters for
each kernel function.
In addition, we also try Transductive SVM (TSVM) [13] on the
datasets. We use SVMlight [25] to evaluate its performance. To
handle the multi-class problem, it works in a one-against-the-rest
+ voting mode. The accuracy is very low so we do not show it
here. This is because it is designed for binary classification tasks.
The one-against-the-rest mode makes the two classes too
unbalanced and TSVM cannot find the good margin for them.
For I-CFS-EM, we run the program for 10 times. The maximum
vote of the classifications of each test image from the 10 runs is
used as the final classification of that image. The I-CFS-EM
parameters are: (a) number of sub-population: 6 for Corel-1500
and Corel 6600, 4 for Corel-10038; (b) sub-population size: 100;
(c) number of generation: 100; (d) crossover rate: 0.6; (e)
mutation rate: exploration and exploitation scheme is used to
decrease the mutation rate from 0.1 to 0.01 with step size 0.01 in
10 iterations; (f) tournament size: 5; (g) fitness threshold: 1.0.

4.3 Classification performance comparisons
Figure 1 shows the classification accuracy comparison of the four
classifiers on the three datasets. The accuracy for all the four
classifiers increases as the percentage of labeled data increases.
As a semi-supervised learning method, I-CFS-EM has higher
accuracy than the supervised learning method SVM (with all three
kernel functions). We can also see big gaps among the
performance of the three kernel functions. RBF is the best as
recommended by the literature. Polynomial kernel has the worst
performance. In our previous work [3], RBF-SVM is not as good
as Linear-SVM because we used the default SVM parameters. In
the new experiments, after applying cross validation, we get fair
evaluation of SVM and RBF-SVM outperforms Linear-SVM. In
Figure 1 (a), result of Corel-1500, accuracy curve of CFS-EM is
added. We could also see the obvious accuracy improvement from
CFS-EM to I-CFS-EM, which is 10% ~ 15%. Figure 2 shows the
precision-recall (PR) curves of the four classifiers on the three
datasets when 20% and 60% of the training data are labeled.
Compared with the accuracy curves, a PR curve gives us more
detailed information about the performance. In these plots, we can
see the same trend as in the accuracy curves: I-CFS-EM > RBF-

460

SVM > Linear-SVM > Poly-SVM; as the percentage of L
increases, the overall performance of all the four classifiers
increase; the performance of I-CFS-EM is higher than SVM, and
the gap increase as the number of classes increases.

Table IV. 95% Confidence intervals of I-CFS-EM.
 r = 20% r = 40% r = 60% r = 80%

Corel-1500 0.66±0.038 0.77±0.034 0.84±0.029 0.863±0.027
Corel-6600 0.34±0.016 0.432±0.017 0.485±0.017 0.54±0.017
Corel-10038 0.18±0.0106 0.182±0.011 0.184/±0.01 0.206±0.011

Table IV shows the 95% confidence intervals of I-CFS-EM on the
three datasets. We could see the confidence is getting higher when
dataset size increase.

Figure 3 shows the 2D projections of the low dimension features
(6D) of Corel-1500. Since there is not a good way to present the
6D feature vectors on the 2D paper, they are projected to 2D.
Every sub-figure shows the projection of the samples from two
classes (blue circles and purple crosses) into two dimensions
where they have the best separation. The ellipses are the Gaussian
ellipses with two times the standard deviation of each class.
Because of the lack of space, we only show some representative
combinations. Each class in Corel-1500 is approximately a
Gaussian distribution even though their original distribution is
not, which justifies the advantage of non-linear transformation
CGP over linear transformation Multi Discriminant Analysis [16].

 (a) Corel-1500 (b) Corel-6600 (c) Corel-10038

Figure 1. Classification accuracy comparison at different percentage of labeled data (r) for the three datasets.
Accuracy order: I-CFS-EM > RBF-SVM > Linear-SVM > Poly-SVM. All accuracies increase as r increases.

Figure 2. Precision-Recall curves of I-CFS-EM and SVM (different kernels) at different r (20% and 60%) for the three datasets.

Figure 3. Projection of synthesized feature vectors of Corel-1500 in 2D (the two axis are the two projection dimensions which give

the best separation for the given two classes). Each class forms an ellipse, which satisfies the Gaussian mixture assumption.

461

4.4 Comparison of computational cost in the
testing phase
For time critical applications, testing efficiency is a big concern.
In this section, we will show that I-CFS-EM is more efficient than
SVM in testing, both theoretically and experimentally, especially
when the original feature dimensionality is high. The parameters
that affect query time for I-CFS-EM and SVM are: class number
C, original feature dimensionality D, reduced feature
dimensionality d, the amount of training data T, the percentage of
labeled training data r and maximum composite size K.
For I-CFS-EM, the maximum computational cost of one query is
given by equation (4), in clock cycles (shortened as cc). The first
term is for the composite feature transformation. Given K as the
maximum number of nodes in a tree, the maximum number of
primitive operators used is K when all the primitive operators
have only one operand and all the K nodes are used. Assume the
most complex computation SQRT (square root) (as mentioned in
section 3.1) is used at each node, which costs 22.3 cc1, then d
composite operators need a maximum of 22.3Kd cc. The second
term is the calculation of the Gaussian probability to C classes. To
find the nearest class we need to find the largest probability
among C classes, which needs C cc, which gives the third term.

CdCKd +++)5.26(3.22 2 (4)

The classification of x between two classes for RBF-SVM,
Linear-SVM and Poly-SVM is defined by equation (5)~(7),
where, xi, i = 1,…, nSV are the support vectors from the two
classes. So nSV = 2λrT/C. The norm calculation costs D cc and
the exponential costs 26.5 cc for RBF-SVM. The inner product
calculation costs D cc for Linear-SVM. The power calculation
costs Dd cc for Poly-SVM. In addition, multi-class SVM is
carried by one-against-one + voting mode, so the total
computational cost is giving by equation (8)~(10).

() ()
⎭
⎬
⎫

⎩
⎨
⎧

+−−= ∑
=

nSV

i
ii txxxf

1

2expsgn γβ (5)

() ()
⎭
⎬
⎫

⎩
⎨
⎧

+= ∑
=

nSV

i

T
ii txxxf

1
sgn β (6)

() ()()
⎭
⎬
⎫

⎩
⎨
⎧

++= ∑
=

nSV

i

dT
ii txxxf

1
sgn τγβ (7)

() () CDCrTCC ++⋅⋅− 5.26/22/1 λ (8)
() CDCrTCC +⋅⋅− /22/1 λ (9)

() () CDdCrTCC +⋅⋅− /22/1 λ (10)

The percentage of support vectors λ is decided by the class
number C, feature dimensionality D and percentage of labeled
training data r. From the real data in our experiments, the
percentage of supported vectors is close for different kernel
functions, as mentioned in the introduction (Table I. Pros and
cons of SVM.). We use Least Mean Square Error (LMSE)

1 The computational cost (cc) of the operations used in our calculation

(SparcStationII) (http://www.mathematik.uni-kl.de/~zca/Reports_on_ca/
11/paper_html/paper.html)

add 1 sub 1 mult 1.1 div 3.1
sqrt 22.3 log 20.3 exp 26.5 comp 1

estimation to get a linear combination of C, D and r as the
estimation of λ. The fitting result is shown in equation (11). The
small MSE validates the linear assumption.

λ= 0.004645*C + 0.002046*D −0.1532*r + 0.70624,
 MSE = 0.0011

(11)

Figure 4 shows the computational cost comparison between I-
CFS-EM and SVM with reference to the percentage of labeled
training data for Corel-1500. The solid line is the maximum cost
of I-CFS-EM and the other three lines are the cost of SVM with
different kernels. It can be seen that they all increase linearly with
the percentage of labeled training data while the cost of I-CFS-
EM does not. Linear-SVM has the lowest slope and the Poly-
SVM has the highest slope. This result is reasonable because from
the definition of the kernel functions, they have different
computational complexities. The figure shows that even when
only 3% of the labeled training data are used, SVM needs more
computation than I-CFS-EM in the testing phase.

Figure 4. Computational cost: I-CFS-EM vs. SVM (For Corel-

1500, C = 12, D = 40, d = 6, T = 749, r = 1%~10%, K = 20).

Figure 5. Computational cost: I-CFS-EM vs. SVM (For Corel-

1500, C = 12, D = 4~12, d = 6, T = 749, r = 20%, K = 20).
From Figure 5 we can see that when the percentage of labeled
data is fixed, computational cost of SVM increases as the number
of dimensions of the original feature vector increases while it is
fixed for I-CFS-EM. Even when the dimension of original feature
vector is only 6, Linear-SVM surpasses I-CFS-EM. The reason
that I-CFS-EM is computationally more efficient than SVM in the
query phase is that I-CFS-EM testing works in a low dimensional
synthesized feature space while SVM works in the original high
dimensional feature space using lots of the training samples. In
the experiments on Corel-1500, the total testing time for 749
images is ~5 seconds for Linear-SVM while it is less than 1
second for I-CFS-EM.
In summary, I-CFS-EM is more efficient than SVM in the testing
phase, which makes it more suitable for time critical applications.

462

4.5 Discussion
Based on the above comparison, we can see: 1) the improvement
of I-CFS-EM over CFS-EM is big; 2) I-CFS-EM has a higher
classification performance than SVM; 3) the classification
performance of SVM is highly kernel dependent; and 4) I-CFS-
EM is much faster than SVM in the testing phase, and the time
does not change with the original feature dimensionality or the
percentage of labeled data.
However, I-CFS-EM is not flawless. Its training time is longer
compared with SVM. For some classes with too few samples, it
cannot converge because the Gaussian model for each class in the
low dimension requires enough samples to make the covariance
matrix non-singular. As a randomly generated classifier, only the
average performance is guaranteed. More than one run may be
required to achieve a good performance. In addition, as a
transductive learning method, our approach obeys the basic
assumption that the unlabeled data has a similar distribution with
the labeled data. When this assumption is violated, the
performance will degrade. To handle the situation when the real
number of components is different with the given component
number, we can add the component estimation method into the
iteration. In addition, the predicted labels on the unlabeled
patterns have the same weight as the given labels on the labeled
patterns. Thus, the mis-predicted labels may dominate in the
parameter estimation process of EM, particularly when there are a
lot of unlabeled data. So the use of different weights can possibly
make CGP and EM cooperate better and improve the
classification accuracy.
In general, there is no perfect classifier. They have their own
suitable applications. Between I-CFS-EM and SVM, if the classes
are uneven and the training time is a concern, e.g., online text
classification for search engine design, SVM with RBF kernel
will commonly give an acceptable performance; however, if the
testing efficiency are key concern, e.g., image retrieval, I-CFS-
EM will be a better choice.

5. CONCLUSIONS
Handling high dimensional feature vectors and labeling of
training data have been two challenging problems in pattern
classification. To solve these problems, we propose an
improvement of a CGP/EM hybrid algorithm, called I-CFS-EM
algorithm. It combines a transductive learning scheme with a
feature dimensionality reduction technique. In this algorithm,
CGP is used to synthesize lower dimensional feature vectors from
the original high dimensional feature vectors so that EM can be
used to form a Gaussian mixture with limited data. Labeled
training data is used to initialize the synthesized feature
transformation, and unlabeled training data is used to boost the
learned classifier. We apply I-CFS-EM on small, medium and
large datasets, evaluate and compare it with SVM and find it
outperforms SVM in both classification performance and testing
efficiency. As discussed in section 4.5, both SVM and I-CFS-EM
have limitations. So proper classifier should be picked based on
the requirements of the application.

6. REFERENCES
[1] B. E. Boser, et al., "A training algorithm for optimal margin

classifiers," in 5th Annual ACM Workshop on COLT, D.
Haussler (Ed.), Pittsburgh, PA, 1992, pp. 144-152.

[2] S. Abe, Support Vector Machines for Pattern Classification,
London: Springer, 2005.

[3] R. Li, et al., "Coevolutionary feature synthesized EM
algorithm for image retrieval," in Proc. ACMMM, Singapore,
2005, pp. 696-705.

[4] D. D. Lee and H. S. Seung, "Learning the parts of objects by
non-negative matrix factorization," Nature, Vol. 401, pp.
788-791, 1999.

[5] S. Z. Li, et al., "Learning spatially localized, parts-based
representation," in Proc. CVPR, 2001, pp. 207-212.

[6] W. Xu, et al., "Document clustering based on non-negative
matrix factorization," in Proc. SIGIR, 2003, pp. 267-273.

[7] X. He, et al., "Learning an image manifold for retrieval," in
Proc. ACMMM, New York, USA, 2004, pp. 17-23.

[8] X. He, et al., "Learning a locality preserving subspace for
visual recognition," in Proc. ICCV, 2003, pp. 385-393.

[9] Y. Lin and B. Bhanu, "Evolutionary feature synthesis for
object recognition," IEEE Trans. on SMC, Part C, Vol. 35,
No. 2, pp. 156-171, 2005.

[10] A. Dong, et al., "Evolutionary feature synthesis for image
databases," in IEEE WACV, 2005, pp. 330-335.

[11] A. P. Dempster, et al., "Maximum likelihood from
incomplete data via the EM algorithm with discussion,"
Journal of the Royal Statistical Society (Series B), Vol. 39,
No. 1, pp. 1-38, 1977.

[12] R. d. S. Virginia, "Learning classification with unlabeled
data," in Advances in Neural Information Processing
Systems: Morgan Kaufmann, 1993, pp. 112-119.

[13] T. Joachims, "Transductive inference for text classification
using support vector machines," in Proc. ICML, 1999.

[14] D. Bargeron, et al., "Boosting-based transductive learning for
text detection," in Proc. Int. Conf. on Document Analysis and
Recognition, 2005, Vol. II, pp. 1166-1171.

[15] Y. Wu and T. S. Huang, "Color tracking by transductive
learning," in Proc. CVPR, 2000, pp. 133-138.

[16] Y. Wu, et al., "Discriminant-EM algorithm with application
to image retrieval," in Proc. CVPR, 2000, pp. 222-227.

[17] C. Saunders, et al., "Transduction with confidence and
credibility," in Proc. IJCAI, 1999, Vol. 2, pp. 722-726.

[18] B. Bhanu, et al., Evolutionary synthesis of pattern
recognition systems, New York: Springer-Verlag, 2005.

[19] J. R. Koza, Genetic Programming II: Automatic Discovery of
Reusable Programs, Cambridge MA: MIT Press, 1994.

[20] G. McLachlan and D. Peel, Finite Mixture Models, Wiley,
2000.

[21] A. Dong and B. Bhanu, "Active concept learning in image
databases," IEEE Trans. on SMC, Part B, Vol. 35, No. 3, pp.
450-466, 2005.

[22] P. Y. Yin, et al., "Integrating relevance feedback techniques
for image retrieval using reinforcement learning," IEEE
Trans. on PAMI, Vol. 27, No. 10, pp. 1536-1551, 2005.

[23] X. S. Zhou, et al., "Water-filling: a novel way for image
structural feature extraction," in Proc. ICIP, Kobe, Japan,
1999.

[24] C. C. Chang and C. J. Lin, "LIBSVM : a library for support
vector machines," Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

[25] T. Joachims, "Making large-scale SVM learning practical,"
in Advances in Kernel Methods -- Support Vector Learning,
B. Schlkopf, et al., (Eds.), Cambridge, MA: MIT Press,
1999, pp. 169-184.

463

