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ABSTRACT 
As a learning method support vector machine is regarded as one of 
the best classifiers with a strong mathematical foundation. On the 
other hand, evolutionary computational technique is characterized as 
a soft computing learning method with its roots in the theory of 
evolution. During the past decade, SVM has been commonly used as 
a classifier for various applications. The evolutionary computation 
has also attracted a lot of attention in pattern recognition and has 
shown significant performance improvement on a variety of 
applications. However, there has been no comparison of the two 
methods. In this paper, first we propose an improvement of a 
coevolutionary computational classification algorithm, called 
Improved Coevolutionary Feature Synthesized EM (I-CFS-EM) 
algorithm. It is a hybrid of coevolutionary genetic programming and 
EM algorithm applied on partially labeled data. It requires less 
labeled data and it makes the test in a lower dimension, which speeds 
up the testing. Then, we provide a comprehensive comparison 
between SVM with different kernel functions and I-CFS-EM on 
several real datasets. This comparison shows that I-CFS-EM 
outperforms SVM in the sense of both the classification performance 
and the computational efficiency in the testing phase. We also give an 
intensive analysis of the pros and cons of both approaches. 

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology – Classifier 
design and evaluation.  

General Terms 
Algorithms. 

Keywords 
Machine learning, co-evolution, pattern classification, Support 
Vector Machines 

1. INTRODUCTION 
Support vector machines (SVM), introduced by Vapnik and 
coworkers in 1992 [1], has been noted as one of the best 
classifiers during the past 20 years. It is popular in bioinformatics, 
text analysis and pattern classification [2]. Table I lists the pros 
and cons of SVM. It is not a perfect classifier. 

Table I. Pros and cons of SVM. 

• Pros • Cons 
• It is independent of the feature 

dimensionality thus immune from 
the “curse of dimensionality”. 

• With the kernel tricks, different 
discriminant functions can be 
obtained by using different kernel 
functions. 

• The boundary is determined only 
by its support vectors, namely SVM 
is robust against changes of all 
vectors but its support vectors. 

• Different SVM classifiers 
constructed by using different 
kernels (polynomial, RBF, linear) 
extract almost the same support 
vectors. 

• As a supervised classifier, it 
needs large amount of 
labeled training data. 

• The best choice of the kernel 
function for a given 
problem is still a research 
problem. 

• The testing speed depends 
on the number of support 
vectors, so it could be slow. 

• The optimal design for 
multi-class SVM classifiers 
is also a research area. 

• It has convergence problem 
with large datasets. 

On the other hand, during the past decade, another methodology 
called Co-Evolutionary Computation (CEC) has attracted lots of 
attention in pattern recognition and machine learning. It has 
shown great performance on image representation, object 
recognition and image retrieval, etc. As a classifier, it is 
comparable to SVM for classification performance [3]. 
However, there has been no shoulder-to-shoulder comparison 
between CEC and SVM yet. So in this paper, first, we select one 
of the recent CEC based classification algorithm Coevolutionary 
Feature Synthesized EM (CFS-EM) [3], make improvements to it 
and call it I-CFS-EM. Then in the experiments, we compare it 
with SVM using different kernels on three image datasets. The 
experimental results show that I-CFS-EM has higher classification 
accuracy and better convergence than CFS-EM and it outperforms 
SVM in both the sense of classification performance and testing 
efficiency. We also discuss about the pros and cons of both I-
CFS-EM and SVM and their suitability for different applications. 

The rest of this paper is organized as follows. Section 2 gives 
some related work. Section 3 describes the I-CFS-EM algorithm 
in detail. Section 4 presents extensive comparisons between I-
CFS-EM and SVM. Finally, section 5 concludes the paper. 

2. RELATED WORK 
The handling of high feature dimensionality and the labeling of 
training data are the two major challenges in pattern recognition. 
To handle the high feature dimensionality, there are two major 
approaches. One is to use special classifiers which are not 
sensitive to dimensionality, for example, SVM algorithm and 
boosting algorithm. The other way is feature selection. It is 
defined as selecting a subset of features or constructing new 
features that are useful to build a good predictor for classification. 
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A variety of interesting feature selection approaches has been 
proposed. Lee and Seung [4] use a non-negative matrix 
factorization (NMF) approach that yields a part-based 
representation instead of a holistic representation. It is found to be 
useful for face recognition [5] and document retrieval [6] . He et 
al. [7, 8] propose the approach of locality preserving projections 
(LPP) for face analysis and image retrieval. It preserves local 
information by detecting a nonlinear manifold structure. Genetic 
algorithms and genetic programming have also been used for 
feature selection for object recognition [9] and image retrieval 
[10]. All the above approaches are supervised classifiers. So they 
need a large amount of labeled data to train large datasets. But 
manual labeling is expensive and subjective.  
On the other hand, unsupervised learning, for example, the 
Expectation Maximization (EM) algorithm [11] which is 
commonly used does not have the labeling problem, but it has two 
limitations. 1) “The curse of dimensionality,” in high dimensional 
feature space it needs a large amount of data and the 
computational cost varies exponentially with the dimensionality, 
which is not always available. 2) As a hill-climbing kind of 
method, the convergence of EM algorithm is guaranteed only at a 
local maximum. 
Thus neither supervised learning nor unsupervised learning can 
solve both the high dimensionality and the labeling problem 
simultaneously. Therefore, the learning usually can only be 
carried out with the hybrid of both labeled and unlabeled data, 
called transductive learning [12].  
The basic idea of transductive learning is that it combines both 
labeled and unlabeled data in training. In this scheme, labeled data 
provide the initialization and validation of the classifier, and the 
unlabeled data captures the statistical characteristics of the dataset 
and boost the classifier. Various transductive learning methods 
have emerged during the past 10 years. Joachimes [13] uses SVM 
scheme to maximize the margin for both the unlabeled data and 
the labeled data by assigning the unlabeled data to proper classes. 
Bargeron et al. [14] propose a boosting-based transductive 
learning. The idea is to construct a diversity of unsupervised 
models of unlabeled data using a clustering algorithm. These 
models are then exploited to construct a number of hypotheses 
using the labeled data and the learner selects a hypothesis that 
minimizes a transductive error bound. Wu et al. use a linear 
feature transformation (MDA) + EM scheme to solve the 
transductive learning problem [15, 16]. Li et al. [3] propose 
another transductive learning scheme, a hybrid of non-linear 
feature synthesis and EM algorithm, called CFS-EM.  
Transductive learning has been applied in image retrieval [3, 16], 
color segmentation [15], text classification [13], text detection 
[14] and digit recognition [17].  
As the latest member of transductive learning family, CFS-EM 
has shown a better performance than D-EM and comparable 
performance with SVM [3].  
In this paper, we build a new classifier based on CFS-EM, called 
the Improved CFS-EM (I-CFS-EM). Besides of keeping all the 
advantages of CFS-EM, it improves CFS-EM on the training 
speed, convergence and classification performance. In this paper 
we do comprehensive comparison between I-CFS-EM and SVM 
on real image datasets. We also discuss the pros and cons of each 
method, and their suitable applications.  

3. I-CFS-EM ALGORITHM 
To help the readers understand the paper, we list the definition of 
all the key symbols in Table II.  

Table II. Definition of the key symbols used in this paper. 

C The number of classes 
D The original feature dimensionality 
d The reduced feature dimensionality 
L The labeled training data set 
U The unlabeled training data set 
T The total number of training data (L+U) 
l L in low dimension 
u U in low dimension 
r The percentage of L in T, r =L/(L+U) 
X The dataset in EM algorithm 

Y The labels for X in EM algorithm and the labels for L+U in I-
CFS-EM algorithm 

W L, U + Y. 
λ The percentage of support vectors in L 

βi,γ,τ,t The parameters for SVM classifier 
CO(.) Composite operator vector 
POP The whole population in I-CFS-EM 

K The maximum composite operator size 

αi,ui,Σi 
Parameters of Gaussian mixture (component weights, means 
and covariance matrices) 

θ The whole parameter set for Gaussian mixture (αi+ui+Σi in 
EM algorithm) or the Bayesian classifier in I-CFS-EM. 

 

I-CFS-EM is a combination of coevolutionary feature synthesis 
(CFS) and EM algorithm. So we discuss them separately before 
the whole algorithm. 

3.1 Coevolutionary feature synthesis 
Coevolutionary feature synthesis is implemented with a 
coevolutionary genetic programming (CGP) approach [9]. It 
creates low dimensional synthesized feature vectors from the 
original high dimensional feature vectors. The synthesized 
features are obtained by applying a series of operators (called a 
composite operator vector) to the original features. These 
operators are binary trees with simple operations, called primitive 
operators (12 simple operators: ADD, SUB, MUL, DIV, ADDC, 
SUBC, MULC, DIVC, LOG, SQRT, MIN2, MAX2) as the inner 
nodes and original features as the leaf nodes. The fitness function 
is the classification accuracy of the Bayesian classifier in the low 
dimensional synthesized feature space. This helps the objects in 
the same class to form a Gaussian component no matter how they 
are distributed in the original space. Actually, with the help of the 
fitness function, we force the distribution in the low dimension to 
be a Gaussian Mixture Model (GMM) even though the original 
features are not GMM and the operators are non-linear. In another 
word, we use the GMM as a target not an assumption because the 
EM step in the loop is based on the GMM assumption. We follow 
the CGP algorithm proposed in [9] to find the “best” composite 
operator vector. During the training phase, CGP runs on the 
labeled training data and evolves to get the best composite 
operator vector and a Bayesian classifier in the synthesized 
feature space. The during the testing phase, a composite feature 
vector (low dimensional vector) is firstly obtained by applying the 
composite operator vector on the original features of the testing 
sample, and then the Bayesian classifier is used for its 
classification.  
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3.1.1 Generational Coevolutionary Genetic 
Programming (CGP) 
Generational coevolutionary genetic programming is shown as in 
Algorithm 1. This algorithm evolves composite operators. The 
composite operators (binary trees) in the initial subpopulations are 
randomly generated. A composite operator is generated in two 
steps. In the first step, the internal nodes of the tree representing 
the composite operator is randomly determined in a recursive 
manner as long as this number is smaller than a given number. In 
the second step, after all the internal nodes are generated, the 
original features are randomly picked and attached to the leaf 
nodes. The GP operations are applied in the order of crossover, 
mutation and selection. In addition, an elitism replacement 
method is adopted to keep the best composite operator from 
generation to generation. To evaluate the jth composite operator 
COj in step 5) in Algorithm 2, the current best composite operator 
in each of the other subpopulations are selected and combined 
with COj to form a composite operator vector where composite 
operator from the jth subpopulation occupies the jth position in 
the vector (j= 1,…, S). The composite operator vector is run on 
the original features of the training images to get composite 
feature vectors and they are used to build a Bayesian classifier. 
The classification accuracy of the Bayesian classifier is the fitness 
of the composite operator vector and COj. 

Algorithm 1: Generational Coevolutionary genetic programming 
(CGP) 

Input: primitive feature vectors, class number, number of subpopulations 
Output: composite operator vector, Bayesian classifier in low dimension. 
Begin: 
1. Randomly generate S subpopulations of size M and evaluate each 

composite operator in each subpopulation individually. 
2.   FOR gen = 1 to G DO 
         FOR i =1 to S DO 

1) Keep the best composite operator in subpopulation Pi . 
2) Perform crossover on the composite operators in Pi until the 

crossover rate is satisfied and keep all the offspring from 
crossover. 

3) Perform mutation on the composite operators in Pi and the 
offspring from crossover with the probability of mutation rate. 

4) Perform selection on Pi to select some composite operators and 
combine them with the composite operators from crossover and 
mutation to get a new subpopulation Pi

’ of the same size as Pi. 
5) Evaluate each composite operator COj ,  j = 1, …, M in Pi

’. 
6) Perform elitism replacement. 
7) Form the current best composite operator vector consisting of 

the best composite operators from corresponding 
subpopulations and evaluate it. If its fitness is above the fitness 
threshold, goto 3. 

END FOR 
      END FOR 
3.  Select the best composite operator from each subpopulation to form the 

learned composite operator vector and output it. 
End 

3.1.2 Parameters  
The key parameters are the number of sub-population S, the size 
of sub-population M, the number of generations G, the crossover 
and mutation rates, the tournament size and the fitness threshold. 
CGP stops whenever it finishes the specified number of 
generations or the performance of the Bayesian classifier is above 
the fitness threshold. After the termination, CGP selects the best 
composite operator of each sub-population to form the learned 
composite operator vector and the Bayesian classifier to be used 

during the testing. The number of sub-population and the size of 
sub-population are dataset dependent parameters and they are 
related with the size of the search space. Normally they are a very 
small percentage of the size of the search space. We have 
determined these two parameters and the number of generations 
based on empirical experiments from our previous work [3, 10]. 
Other parameters (crossover rate, mutation rate and tournament 
size) are well explored in the literature on evolutionary 
computation, so they are chosen based on the experience [18, 19]. 

3.2 EM Algorithm 
We assume feature vectors in the low dimension follow a C 
component Gaussian Mixture Model (GMM). They can be 
regarded as samples of a d-dimensional random variable X, where 
x = [x1, … xd]T represents a particular sample. Its probability 
density function is defined as ( )θ|Xp = ( )iii

C

i
f θα |X∑  

( )iiii

C

i
f ∑=∑ ,| uXα . In this definition, α1, … αC  are the mixture 

probabilities, so they must be positive and sum up to 1. θi is the 
set of parameters for the ith Gaussian component, which includes 
mean μi and covariance matrix Σi. Thus, θ  ≡  {α1 , … αC, θ1 , … 
θC} is the complete set of parameters needed to specify the 
mixture. Given a set of N independent samples of X: X ={x(1), …, 
x(N)}, the goal is to find θ which maximizes log p(X|θ) (maximum 
likelihood). Expectation-Maximization (EM) is such an algorithm 
[20] to find θ. It is based on the interpretation of X as incomplete 
data. The missing part is a set of N labels Y =[y(1), … , y(N)] 
associated with the N samples, indicating which component 
produced each sample. y(n) =[ y1

(n),…, yC
(n)] , where yk

(n) =1 and 
yj

(n) =0 for j ≠ k, means that sample y(n)  was produced by the kth 
component. The complete log-likelihood is  
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EM algorithm produces a sequence of estimates { ( )tθ̂ , t = 0, 1, 
2,…} by alternatively applying the following E-step and M-step 
until some convergence criterion is met. 
• E-step computes the conditional expectation of the complete 
log-likelihood, given X and the current estimate ( )tθ̂ . The result is 
the so-called Q-function shown in equation (2). In this equation, 
because of the linearity of log p(X,Y |θ) with respect to Y, we only 

need to compute the conditional expectation Z ≡  E[Y|X, ( )tθ̂ ]. It 
is explicitly given by equation (3), where zi

(n) is a posteriori 
probability that yi

(n) =1, after observing x(n). 
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• M-step updates the parameter estimation to maximize the Q-
function. 

3.3 I-CFS-EM Algorithm 
The I-CFS-EM algorithm is described in Algorithm 2. In the 
initialization, CGP is applied on the labeled training data (L) to 
get a composite operator vector CO(·) and a Bayesian classifier 
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represented by the Gaussian distribution parameter set θ. The 
population corresponding to the best composite operator vector is 
saved (POP). Both the labeled training data (L) and the unlabeled 
training data (U) are transformed into the low dimension (l and u) 
using this composite operator vector CO(·). In I-CFS-EM 
iteration, firstly the ‘EM hill climbing’ step is applied on this low 
dimension dataset (l+u) to find a locally optimal Bayesian 
classifier. EM stops when the Bayesian parameters (θ) do not 
change for two consecutive iterations. At this time, both L and U 
are “labeled” by the Bayesian classifier. Labels of L will be 
changed to their ground-truth labels (step 2). In the ‘Jump out of 
local maximum’ step, CGP is applied on the “labeled” whole 
dataset to find a better composite operator vector (step 6) and to 
update the Bayesian classifier. The stored population is used as 
the initial population for CGP and it is updated by the new 
population to keep the performance increasing. The ‘Hill 
climbing’ and ‘Jump out of local maximum’ steps iterate until one 
of the three termination conditions is reached: 1) a certain number 
of iterations is run, 2) a satisfactory classification performance is 
reached, or 3) the fitness value does not change for 5 iterations. 

Algorithm 2: I-CFS-EM 

Input:  labeled training dataset L from C classes in the original feature 
space 
Unlabeled training dataset U in the original feature space 
Synthesized feature dimension d 
CGP parameters (sub-population size, crossover rate, mutation 
rate, maximum composite operator size, fitness value, 
tournament size and generation number) 

Output: Composite operator vector CO(•) 
 Bayesian classifier in the low dimension θ 

Begin: 
Initialization:  

[CO(•), θ] = CGP(L). (randomly initialized)  
Save the population corresponding to the best CO(•) as POP. 
l = CO(L), u = CO(U). 

I-CFS-EM iteration: 
Hill climbing: 

1) Get labels (Y) for l + u (by calculating Z based on equation (3)). 
2) Change the labels (Y) of l to the ground-truth labels. 
3) Update θ based on Y. 
4) If θ does not change much, goto 5), otherwise, goto 1). 

Jump out of local maximum: 
5) W = L,U + Y. // W is the “labeled” whole training dataset (L, U 

together with their labels Y) 
6) [CO(•),θ] = CGP(W) (using POP as the initial population 

and updating POP at the end). 
7)  l = CO(L), u = CO(U), goto 1). 

End 

In the hybrid approach, CFS-EM initializes the entire population 
randomly at each iteration, which gives up all the training work 
from the previous iteration. Different with CFS-EM, the hybrid I-
CFS-EM saves the population at the CGP step of each iteration 
and uses it as the initial population for the CGP step in the next 
iteration (as highlighted in Algorithm 2 with bold font). This 
helps to obtain a better convergence and a better classification 
performance. I-CFS-EM also defines three new termination 
conditions to speed up the training. In addition, Exploration and 
exploitation scheme is used within CGP to decrease the mutation 
rate from iteration to iteration, such that population with big 
variance could be explored using high mutation rate in the early 
iterations and the convergence is assured with the low mutation 
rate in the later iterations. The mutation rate is fixed for all the 

generations in one iteration. The advantages of I-CFS-EM are: 1) 
It synthesizes low-dimensional features based on the CGP 
algorithm, which yields near “optimal” nonlinear transform; 2) 
The unlabeled data can be boosted with the help of the class 
distribution learning using the CGP feature synthesis approach; 3) 
The possibility exists of helping EM to jump out of local 
maximum and reach the global maximum. 
Table III compares I-CFS-EM with SVM in both the classification 
capability and computational complexity.  

Table III. Comparison between I-CFS-EM and SVM in 
theoretical considerations. 

 I-CFS-EM SVM 
Feature dimensionality change High  low High  higher
Problem of kernel selection No Yes 
Sensibility to parameter selection No Yes 
Meaningful model for the classifier Yes No 
Multi-class handling Natural Non-natural 
Stability  Medium High 
Training time Long Short 
Testing time Short Long 

In the following we explain Table III in detail. 1) Both of them 
synthesize new features from the original data. The difference is 
that I-CFS-EM transforms the original feature vectors into a low 
dimension while SVM projects them into a higher dimension. 
Both of the transformed features have no physical meaning. 2) 
The performance of SVM highly depends on the selection of   
kernel function. Different kernel functions give quite different 
performance. Some kernel functions (e.g. sigmoid) do not even 
converge on some dataset. I-CFS-EM has no such constraint. 3) 
Even a good kernel function is picked for SVM, the parameter 
setting has a big impact on the performance, so cross validation is 
required to choose the best set of parameters. On the other hand, 
even though I-CFS-EM has a lot more parameters (population 
size, crossover/mutation rate, etc.) to set, the evolutionary 
computation community has done a lot of research on it and the 
effect of parameters is reasonably well understood. So the default 
parameters generally do a good job. 4) I-CFS-EM classifier is 
obtained in the form of a feature transformation and a Bayesian 
classifier.  However, SVM generates black box models in the 
sense that it has no ability to explain, in an understandable form. 
5) Given in a form of a Bayesian classifier in the low dimension, 
I-CFS-EM is born for multi-class tasks. SVM is designed for two 
class problems. Thus it can only use one-against-one (or one-
against-the-rest) + voting mode to handle multi-class problems, a 
non-natural way. So it is not as efficient as I-CFS-EM for testing. 
6) As a learning approach, I-CFS-EM gives different classifiers at 
each run. Some time it overfits, but it can be avoided by 
integrating a criterion like Minimum Description Length in the 
fitness function. SVM is less likely to overfit and gives the same 
result all the time. So I-CFS-EM is not as stable as SVM. 7) From 
the computational cost perspective, I-CFS-EM is slower than 
SVM in the training phase but much faster than SVM in the 
testing phase. The long training time is due to the exploitation 
among the large population. The short testing time is because that 
the feature transformation enables the test to be done in the 
synthesized low-dimensional space, while SVM has to make the 
classification computation in the original high dimensional space 
using all the support vectors. This makes I-CFS-EM suitable for 
time critical applications even though it requires long training 
time. There is no free lunch, right? 
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4. EXPERIMENTAL RESULTS 
To evaluate the efficacy of I-CFS-EM approach for classification, 
we apply it on three real image datasets of small, medium and 
large sizes. We compare it with RBF-SVM, Linear-SVM and 
Poly-SVM (corresponding to radial basis function, linear and 
polynomial kernels) on both the classification performance and 
the test efficiency. We use image datasets because for image 
retrieval, the labeling is a problem and the query efficiency is a 
key concern. 

4.1 Datasets 
• Corel-1500: We select 1200 images belonging to 12 classes 
from Corel Stock photo library (Mayan & Aztec Ruins, horses, 
owls, sunrises & sunsets, North American wildflowers, ski scenes, 
coasts, auto racing, firework   photography, divers & diving, land 
of the Pyramids and lions) because they have high semantic 
consistency for each class and it has been used in some previous 
work [21] for image retrieval evaluation. The images in each class 
have similar visual features. We assume that the images in each 
class in the feature space forms a Gaussian cluster in the feature 
space. Then we add 300 images from three other CDs in the 
library (hawks and falcons, tigers and tulips) to form Corel-1500. 
The three new CDs are merged to owl, lions and North American 
wildflowers, respectively. Thus, Corel-1500 still has 12 classes. 
The purpose of Corel-1500 is to demonstrate that CGP can map 
the original features to a low dimensional space and make their 
distribution a Gaussian no matter how the original features are 
distributed. Since each class is no longer a Gaussian cluster in the 
original feature space, this database is challenging for pure EM 
and linear transformation D-EM [16]. 
• Corel-6600: This dataset is also extracted from Corel stock. 
It contains 50 classes and there are ~100 images in each class, 
which give a total of 6600 images. This dataset is to test the 
scalability of the algorithm. 
• Corel-10038: This dataset is also obtained from Corel stock. 
It contains 56 classes and a total of 10038 images. The same 
dataset was used by Yin el al. [22] for relevance feedback 
experiments. The dataset is quite unbalanced for different classes. 
The class size varies from 695 images to 20 images. The small 
classes do not have enough samples to fit the Gaussian 
distributions. So we redistribute samples from the three smallest 
classes (obelisk, golf course and national flag) into the visually 
closest classes. Thus this dataset has 53 classes and the minimum 
class has 60 images. All the other classes have varying number of 
images: 62, …, 395,…, 695. This dataset can test the ability to 
handle unbalanced classes. This dataset is larger than Corel-6600 
and the classes are unbalanced. Thus it can test the algorithm’s 
scalability in a more comprehensive way than Corel-6600. 
For Corel-1500 and Corel-6600, each image is represented by 16 
texture features, 6 color features and 18 structural features, a total 
of 40 features. For Corel-10038, only texture features and color 
features are used (totally 22). The 16 texture features are means 
and standard deviations derived from 8 Gabor filters (2 scales and 
4 orientations). The 6 color features are means and standard 
deviations of the HSV color channels. The 18 structural features 
are extracted using the water-filling approach [23]. 

4.2 Experimental settings 
All the features in the above three datasets are normalized (to 
range [0,1]). The whole dataset is split into halves, one half for 

training and the other half for testing. A percentage of the training 
data (20%, 40%, 60% and 80%) is defined as the labeled training 
data (L) and the rest as the unlabeled training data (U). For a 
certain percentage of labeled data, the average classification 
accuracies, the precision-recall curves and the query 
computational cost on the testing data are compared among the 
four classifiers. I-CFS-EM reduces the feature dimensionality 
from 40 to 6 for Corel-1500 and Corel-6600, and from 22 to 4 for 
Corel-10038. Because of the unbalanced classes in Corel-10038 
even after redistributing the samples from the smallest classes, 
some small classes (minimum class size is 6 for the training data 
when 20% of training data are labeled) do not have enough 
samples to fit a 6 dimensional Gaussian distribution. So for this 
dataset, we decrease the features dimensionality to 4. 
We use LIBSVM [24] to evaluate the performance of SVM. We 
use RBF, linear and polynomial kernel functions. We do not use 
the sigmoid function because kernel matrix using sigmoid may 
not be positive definite. Actually, we have tried sigmoid kernel in 
the experiment and the result is singular. To handle multi-class 
problem, it works in a one-against-one + voting mode. We do a 
five-fold cross validation to obtain the best set of parameters for 
each kernel function.  
In addition, we also try Transductive SVM (TSVM) [13] on the 
datasets. We use SVMlight [25] to evaluate its performance. To 
handle the multi-class problem, it works in a one-against-the-rest 
+ voting mode. The accuracy is very low so we do not show it 
here. This is because it is designed for binary classification tasks. 
The one-against-the-rest mode makes the two classes too 
unbalanced and TSVM cannot find the good margin for them. 
For I-CFS-EM, we run the program for 10 times. The maximum 
vote of the classifications of each test image from the 10 runs is 
used as the final classification of that image. The I-CFS-EM 
parameters are: (a) number of sub-population: 6 for Corel-1500 
and Corel 6600, 4 for Corel-10038; (b) sub-population size: 100; 
(c) number of generation: 100; (d) crossover rate: 0.6; (e) 
mutation rate: exploration and exploitation scheme is used to 
decrease the mutation rate from 0.1 to 0.01 with step size 0.01 in 
10 iterations; (f) tournament size: 5; (g) fitness threshold: 1.0. 

4.3 Classification performance comparisons 
Figure 1 shows the classification accuracy comparison of the four 
classifiers on the three datasets. The accuracy for all the four 
classifiers increases as the percentage of labeled data increases. 
As a semi-supervised learning method, I-CFS-EM has higher 
accuracy than the supervised learning method SVM (with all three 
kernel functions). We can also see big gaps among the 
performance of the three kernel functions. RBF is the best as 
recommended by the literature. Polynomial kernel has the worst 
performance. In our previous work [3], RBF-SVM is not as good 
as Linear-SVM because we used the default SVM parameters. In 
the new experiments, after applying cross validation, we get fair 
evaluation of SVM and RBF-SVM outperforms Linear-SVM. In 
Figure 1 (a), result of Corel-1500, accuracy curve of CFS-EM is 
added. We could also see the obvious accuracy improvement from 
CFS-EM to I-CFS-EM, which is 10% ~ 15%. Figure 2 shows the 
precision-recall (PR) curves of the four classifiers on the three 
datasets when 20% and 60% of the training data are labeled. 
Compared with the accuracy curves, a PR curve gives us more 
detailed information about the performance. In these plots, we can 
see the same trend as in the accuracy curves: I-CFS-EM > RBF-
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SVM > Linear-SVM > Poly-SVM; as the percentage of L 
increases, the overall performance of all the four classifiers 
increase; the performance of I-CFS-EM is higher than SVM, and 
the gap increase as the number of classes increases. 

Table IV. 95% Confidence intervals of I-CFS-EM. 
 r = 20% r = 40% r = 60% r = 80% 

Corel-1500 0.66±0.038 0.77±0.034 0.84±0.029 0.863±0.027
Corel-6600 0.34±0.016 0.432±0.017 0.485±0.017 0.54±0.017 
Corel-10038 0.18±0.0106 0.182±0.011 0.184/±0.01 0.206±0.011

Table IV shows the 95% confidence intervals of I-CFS-EM on the 
three datasets. We could see the confidence is getting higher when 
dataset size increase. 

Figure 3 shows the 2D projections of the low dimension features 
(6D) of Corel-1500. Since there is not a good way to present the 
6D feature vectors on the 2D paper, they are projected to 2D. 
Every sub-figure shows the projection of the samples from two 
classes (blue circles and purple crosses) into two dimensions 
where they have the best separation. The ellipses are the Gaussian 
ellipses with two times the standard deviation of each class. 
Because of the lack of space, we only show some representative 
combinations. Each class in Corel-1500 is approximately a 
Gaussian distribution even though their original distribution is 
not, which justifies the advantage of non-linear transformation 
CGP over linear transformation Multi Discriminant Analysis [16]. 

 
                (a) Corel-1500            (b) Corel-6600    (c) Corel-10038 

Figure 1. Classification accuracy comparison at different percentage of labeled data (r) for the three datasets.  
Accuracy order: I-CFS-EM > RBF-SVM > Linear-SVM > Poly-SVM. All accuracies increase as r increases.  

 
Figure 2. Precision-Recall curves of I-CFS-EM and SVM (different kernels) at different r (20% and 60%) for the three datasets. 

 
Figure 3. Projection of synthesized feature vectors of Corel-1500 in 2D (the two axis are the two projection dimensions which give 

the best separation for the given two classes). Each class forms an ellipse, which satisfies the Gaussian mixture assumption.
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4.4 Comparison of computational cost in the 
testing phase 
For time critical applications, testing efficiency is a big concern. 
In this section, we will show that I-CFS-EM is more efficient than 
SVM in testing, both theoretically and experimentally, especially 
when the original feature dimensionality is high. The parameters 
that affect query time for I-CFS-EM and SVM are: class number 
C, original feature dimensionality D, reduced feature 
dimensionality d, the amount of training data T, the percentage of 
labeled training data r and maximum composite size K. 
For I-CFS-EM, the maximum computational cost of one query is 
given by equation (4), in clock cycles (shortened as cc). The first 
term is for the composite feature transformation. Given K as the 
maximum number of nodes in a tree, the maximum number of 
primitive operators used is K when all the primitive operators 
have only one operand and all the K nodes are used. Assume the 
most complex computation SQRT (square root) (as mentioned in 
section 3.1) is used at each node, which costs 22.3 cc1, then d 
composite operators need a maximum of 22.3Kd cc. The second 
term is the calculation of the Gaussian probability to C classes. To 
find the nearest class we need to find the largest probability 
among C classes, which needs C cc, which gives the third term. 

CdCKd +++ )5.26(3.22 2  (4)

The classification of x between two classes for RBF-SVM, 
Linear-SVM and Poly-SVM is defined by equation (5)~(7), 
where, xi, i = 1,…, nSV  are the support vectors from the two 
classes. So nSV = 2λrT/C. The norm calculation costs D cc and 
the exponential costs 26.5 cc for RBF-SVM. The inner product 
calculation costs D cc for Linear-SVM. The power calculation 
costs Dd cc for Poly-SVM. In addition, multi-class SVM is 
carried by one-against-one + voting mode, so the total 
computational cost is giving by equation (8)~(10). 
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The percentage of support vectors λ is decided by the class 
number C, feature dimensionality D and percentage of labeled 
training data r. From the real data in our experiments, the 
percentage of supported vectors is close for different kernel 
functions, as mentioned in the introduction (Table I. Pros and 
cons of SVM.). We use Least Mean Square Error (LMSE) 

                                                                 
1 The computational cost (cc) of the operations used in our calculation 

(SparcStationII) (http://www.mathematik.uni-kl.de/~zca/Reports_on_ca/ 
11/paper_html/paper.html) 

add 1 sub 1 mult 1.1 div 3.1 
sqrt 22.3 log 20.3 exp 26.5 comp 1 

 

estimation to get a linear combination of C, D and r as the 
estimation of λ. The fitting result is shown in equation (11). The 
small MSE validates the linear assumption. 

λ= 0.004645*C + 0.002046*D −0.1532*r + 0.70624, 
          MSE = 0.0011 

(11)

Figure 4 shows the computational cost comparison between I-
CFS-EM and SVM with reference to the percentage of labeled 
training data for Corel-1500. The solid line is the maximum cost 
of I-CFS-EM and the other three lines are the cost of SVM with 
different kernels. It can be seen that they all increase linearly with 
the percentage of labeled training data while the cost of I-CFS-
EM does not. Linear-SVM has the lowest slope and the Poly-
SVM has the highest slope. This result is reasonable because from 
the definition of the kernel functions, they have different 
computational complexities. The figure shows that even when 
only 3% of the labeled training data are used, SVM needs more 
computation than I-CFS-EM in the testing phase.   

 
Figure 4. Computational cost: I-CFS-EM vs. SVM (For Corel-

1500, C = 12, D = 40, d = 6, T = 749, r = 1%~10%, K = 20).  

 
Figure 5. Computational cost: I-CFS-EM vs. SVM (For Corel-

1500, C = 12, D = 4~12, d = 6, T = 749, r = 20%, K = 20). 
From Figure 5 we can see that when the percentage of labeled 
data is fixed, computational cost of SVM increases as the number 
of dimensions of the original feature vector increases while it is 
fixed for I-CFS-EM. Even when the dimension of original feature 
vector is only 6, Linear-SVM surpasses I-CFS-EM. The reason 
that I-CFS-EM is computationally more efficient than SVM in the 
query phase is that I-CFS-EM testing works in a low dimensional 
synthesized feature space while SVM works in the original high 
dimensional feature space using lots of the training samples. In 
the experiments on Corel-1500, the total testing time for 749 
images is ~5 seconds for Linear-SVM while it is less than 1 
second for I-CFS-EM. 
In summary, I-CFS-EM is more efficient than SVM in the testing 
phase, which makes it more suitable for time critical applications.  
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4.5 Discussion 
Based on the above comparison, we can see: 1) the improvement 
of I-CFS-EM over CFS-EM is big; 2) I-CFS-EM has a higher 
classification performance than SVM; 3) the classification 
performance of SVM is highly kernel dependent; and 4) I-CFS-
EM is much faster than SVM in the testing phase, and the time 
does not change with the original feature dimensionality or the 
percentage of labeled data.  
However, I-CFS-EM is not flawless. Its training time is longer 
compared with SVM. For some classes with too few samples, it 
cannot converge because the Gaussian model for each class in the 
low dimension requires enough samples to make the covariance 
matrix non-singular. As a randomly generated classifier, only the 
average performance is guaranteed. More than one run may be 
required to achieve a good performance. In addition, as a 
transductive learning method, our approach obeys the basic 
assumption that the unlabeled data has a similar distribution with 
the labeled data. When this assumption is violated, the 
performance will degrade. To handle the situation when the real 
number of components is different with the given component 
number, we can add the component estimation method into the 
iteration. In addition, the predicted labels on the unlabeled 
patterns have the same weight as the given labels on the labeled 
patterns. Thus, the mis-predicted labels may dominate in the 
parameter estimation process of EM, particularly when there are a 
lot of unlabeled data. So the use of different weights can possibly 
make CGP and EM cooperate better and improve the 
classification accuracy. 
In general, there is no perfect classifier. They have their own 
suitable applications. Between I-CFS-EM and SVM, if the classes 
are uneven and the training time is a concern, e.g., online text 
classification for search engine design, SVM with RBF kernel 
will commonly give an acceptable performance; however, if the 
testing efficiency are key concern, e.g., image retrieval, I-CFS-
EM will be a better choice. 

5. CONCLUSIONS 
Handling high dimensional feature vectors and labeling of 
training data have been two challenging problems in pattern 
classification. To solve these problems, we propose an 
improvement of a CGP/EM hybrid algorithm, called I-CFS-EM 
algorithm. It combines a transductive learning scheme with a 
feature dimensionality reduction technique. In this algorithm, 
CGP is used to synthesize lower dimensional feature vectors from 
the original high dimensional feature vectors so that EM can be 
used to form a Gaussian mixture with limited data. Labeled 
training data is used to initialize the synthesized feature 
transformation, and unlabeled training data is used to boost the 
learned classifier. We apply I-CFS-EM on small, medium and 
large datasets, evaluate and compare it with SVM and find it 
outperforms SVM in both classification performance and testing 
efficiency. As discussed in section 4.5, both SVM and I-CFS-EM 
have limitations. So proper classifier should be picked based on 
the requirements of the application. 
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